Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
نویسندگان
چکیده
We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.
منابع مشابه
Effects of Hyperbilirubinemia on Auditory Brainstem Response of Neonates Treated with Phototherapy
Introduction: One of the most common pathologies in neonates is hyperbilirubinemia, which is a good marker for damage to the central nervous system. The sensitivity of the auditory system to bilirubin has been previously documented, with much discrepancy in its effects on Auditory Brainstem Response results. Thus the objective of this study was to evaluate the effects of hyperbilirubinemia on ...
متن کاملCLINICAL CORRELATIONS BETWEEN AUDITORY BRAIN STEM RESPONSE AND MAGNETIC RESONANCE IMAGING IN PATIENTS WITH DEFINITE MULTIPLE SCLEROSIS
In an attempt to assess objectively the integrity of the auditory pathways in 30 patients with definite multiple sclerosis (MS), an audiometric evaluation was performed and auditory brainstem responses (ABRs) were obtained. Stressing the auditory system by increasing the stimulation rate showed some enhancement in the identification of MS. 24 (RO%) patients had an abnormal ABR along with c...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کاملEffect of Infant Prematurity on Auditory Brainstem Response at Preschool Age
Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age. Materials and Methods: An auditory brainstem response (ABR) test was performed with low rates of stimuli in 60 ch...
متن کاملThe Relationship between Severe Hyperbilirubinemia and Abnormal Auditory Brainstem Response in children
Abstract:Background : Hyperbilirubinemia is one of the most common cause of congenital sensory neuronal hearing loss. These patients are screened by auditory brainstem response (ABR) test at bilirubin levels higher than 1% of gestational weight. Aim: to determine whether hyperbilirubinemia less than 1% of gestational weight could induce hearing loss and abnormal auditory brainstem response (ABR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in neurosciences
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2005